

Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028840 All the material in this publication is copyright © Edexcel Ltd 2011

PMT

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

PMT

June 2011 6684 Statistics S2 Mark Scheme

r		
Question Number	Scheme	Marks
1. (a)	The <u>list</u> of <u>ID numbers</u>	B1 (1)
(b)	$F \sim B(50, 0.02)$	B1 B1 (2) 3
Notes: (a) (b)	B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks 1^{st} B1 for $n = 50$ and $p = 0.02$ or (50,0.02) NB (0.02, 50) is B0 Po(1) alone is B0B0 For a probability table 1^{st} B1 Use of B(50,0.02) NB P($X = 0$) = 0.3642 2^{nd} B1 Table must have all 50 values and their probabilities.	

advancing learning, changing lives

		advancing learnin	g, changing lives
Question Number	Scheme		Marks
2. (a)	Poisson		B1 (1)
(b)	$H_0: \mu = 9 \text{ (or } \lambda = 36)$ $H_1: \mu > 9 \text{ (or } \lambda > 36)$		B1 B1
	$X \sim Po(9)$ and $P(X \ge 12) = 1 - P(X \le 11)$ or	$P(X \le 14) = 0.9585$ $P(X \ge 15) = 0.0415$	M1
	= 1-0.8030 = 0.197	$\underline{CR X} \ge \underline{15}$	A1
	(0.197 > 0.05) so not significant/ accept H ₀ / Not in CR he does not have evidence to switch on the <u>speed</u>	restrictions (o.e)	M1d A1ft (6)
(c)	Let $Y =$ the number of vehicles in 10 s then $Y \sim F$	20(6)	B1
	Tables: $P(Y \le 10) = 0.9574$ so $P(Y \ge 11) = 0.0426$		M1
		ds 11 vehicles	A1
			(3) 10
Notes:			
(a)	B1 for Poisson or Po. Ignore their value for t	the mean.	
(b)	1 st B1 for H ₀ : $\mu/\lambda = 9$ or $\mu/\lambda = 36$ 2 nd B1 for H ₁ : $\mu/\lambda > 9$ or $\mu/\lambda > 36$		
	1 st M1 for writing or using 1 - P($X \le 11$) or writi May be implied by correct CR.or probability = 0.1 A1 for 0.197 or a correct CR. Allow $X > 14$. NB 2 nd M1 dependent on the 1 st M1 being awarded. I Do not allow non-contextual conflicting statement comparisons . 2 nd A1 for a correct contextualised statement. NB	P($X \le 11$) = 0.8030 on its own score For a correct statement based on the ts eg "significant" and "accept H ₀ ".	es M1A1 table below. I gnore
	M1A1.	.0.05	
	$0.05 not significant/ accept H0/ Not in CR$	p < 0.05 or p > 0.95 significant/ reject H ₀ / In CR	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		e <u>speed</u>
	Two tail 1^{st} M1 for writing or using 1 - P($X \le 11$) or writing be implied by correct CR. or probability = 0.197 A1 for 0.197 or CR $X \ge 16$. Allow $X > 15$. NB P($X = 2^{\text{nd}}$ M1 dependent on the 1 st M1 being awarded . F Do not allow non-contextual conflicting statements	$K \le 11$ = 0.8030 on its own scores N For a correct statement based on the t	11A1 able below.

PMT

advancing learning, changing lives

Question Number	Scheme	Marks	
	comparisons . 2 nd A1 for a correct contextualised statement. NB A correct contextual statement on it M1A1.	s own scores	
	0.025 0.975		
	2^{nd} M1 not significant/ accept H ₀ / Not in CR significant/ reject H ₀ / In CR		
	2 nd A1 Insufficient evidence to switch on the speed restrictions Sufficient evidence to switch on th	ne	
(c)	B1 for identifying Po(6) - may be implied by use of correct tables M1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by correct answer of 11 A1 cao do not accept $X \ge 11$ NB answer of 11 with no working gains all three marks.		
3. (a)	Mode = 3 from graph	B1 (1)	
(b)	$\int_{0}^{3} kx^{2} dx = 0.5 \Rightarrow \left[\frac{kx^{3}}{3}\right]_{0}^{3} = 0.5$ So $\frac{27k}{3} - 0 = 0.5 \Rightarrow k = \frac{1}{18}$ (using median = 3)	M1 A1	
	So $\frac{27k}{3} - 0 = 0.5 \implies k = \frac{1}{18}$ (using median = 3)	M1d A1	
		(4)	
(c)	Height of triangle = $\frac{1}{18} \times 3^2 = \frac{1}{2}$	B1ft	
	Area of triangle = $\frac{1}{2} \times (a-3) \times \frac{1}{2} = \frac{1}{2}$	M1	
	so $a = 5$ cao	A1 (3)	
(d)	From graph distribution is negative skew (left tail is longer) μ < median for negative skew so E(X) < 3	B1 B1d	
	$[N.B. E(X) = 2\frac{23}{24}]$	(2) 10	
Notes: (b)	1 st M1 for attempt to integrate $f(x)$ (need x^3). Integration must be in part (b) 1 st A1 for correct integration. Ignore limits for these two marks. 2 nd M1 Dependent on the previous M mark being awarded. For use of correct limits and set equal to 0.5 - leading to a linear equation for k. No need to see 0 substituted. 2 nd A1 for $k = \frac{1}{18}$ or exact equivalent NB $k = \frac{1}{18}$ with no working gains M0A0M0A0 $k = \frac{1/2}{9} = \frac{1}{18}$ without sight of integration is M0A0M0A0		
(c)	B1 for correct height of triangle using their k. ie 9k. May be seen in working for area of Or correct gradient of line ie $\frac{9k}{(3-a)}$ o.e.	f triangle.	

GCE Statistics S2 (6684) June 2011

Question	advancing learning		
Number	Scheme	Marks	
	M1 for a correct linear equation for <i>a</i> , in the form $\pm \frac{1}{2} \times (a-3) \times 9k = \frac{1}{2}$ (Must see		
	NB if they have stated their height and then used their height rather than $9k$ allow M1 A1 cao NB stating a = 5 and then verifying area of the triangle = 0.5 is acceptable.		
	NB a = 5 on its own is B0M0A0 SC Integration of both parts = 1 or Integration of line = 0.5 leading to $a^2 - 8a + 15 = 0$	gets B1	
	M1 and if they identify $a = 5$ A1		
(d)	1^{st} B1for identifying negative skew 2^{nd} B1dependent on previous B mark being awarded. For correct deduction E(X) <3		
4 (a)	$\frac{9.5-7}{10-7}$	M1	
	$=\frac{5}{6}$ awrt 0.833	A1 (2)	
(b)	P(Longest > 9.5) = 1 - P(all < 9.5) = $1 - \left(\frac{5}{6}\right)^3$	(2) M1	
	$=\frac{91}{216} \text{ or } 0.421$	A1	
		(2)	
(c)	$P(a \text{ stick} < 7.6) = \frac{0.6}{3} = 0.2$	B1	
	Let $Y =$ number of sticks (out of 6) <7.6 then $Y \sim B(6, 0.2)$ P($Y > 4$) = 1 - P($Y \le 4$)	M1 M1	
	= 1 - 0.9984 = 0.0016 or $\frac{1}{625}$	A1 (4)	
Notes:		8	
(a)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} dx$		
(b)	M1 for $1-(a)^3$ or $(1-a)^3 + 3(1-a)^2 a + 3(1-a)a^2$		
(c)	A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability 1^{st} M1 for writing or using B(6, p) may be implied by $np^x(1-p)^{6-x}$ using their p and n 2^{nd} M1 for writing or using $1 - P(Y \le 4)$ or $np^5(1-p) + p^6$ (n is an integer > 1) A1 cao	 ≥1	
	NB 0.0016 with no working gets B0M0M0A0		
5.			
(a)	$X \sim \text{Po}(5); P(X \le 3) = 0.2650$	M1 A1	
		(2)	

advancing	learning,	changing	lives
-----------	-----------	----------	-------

Question Number	Scheme	Marks
(b)	Let <i>Y</i> = the no.of planks with at most 3 defects, <i>Y</i> ~Binomial $P(Y < 2) = P(Y \le 1)$ $= \begin{bmatrix} 0.735^6 + 6 \times 0.265 \times 0.735^5 \end{bmatrix}$ = 0.4987 awrt 0.499 or 0.498	M1 A1ft M1 A1 A1 (5)
(c)	Let $T = \text{total number of defects on 6 planks}, T \sim \text{Po}(30) \text{ so } T \approx S \sim \text{Normal}$ $S \sim \text{N}(30, 30)$ P(T < 18) = P(S < 17.5) $= P\left(z < \frac{17.5 - 30}{\sqrt{30}}\right)$ = P(Z < -2.28) = 0.01123 awrt 0.0112 or 0.0113	(5) M1 A1 M1 M1 A1 A1 A1 (6) 13
Notes: (a) (b) (c)	= 0.01123 awrt 0.0112 or 0.0113	

advancing	learning,	changing	lives
-----------	-----------	----------	-------

Question Number	Scheme		Marks
6. (a)	$H_0: p = 0.15$ $H_1: p \neq 0.15$		B1 B1
(4)	$X \sim B(30, 0.15)$		M1
	$P(X \le 1) = 0.0480 \text{ or } CR: X = 0$		A1
	(0.0480 > 0.025)		
	not a significant result or do not reject H_0 or not in		M1
	there is no evidence of a <u>change</u> in the <u>proportion</u> <u>the display</u> .	of customers buying an item from	A1ft
			(6)
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$		B1
	Let $S =$ the number who buy sandwiches, $S \sim B(120)$), 0.2),	
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$		M1 A1
	$P(S \ge 31) = P(W \ge 30.5)$		M1
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right) \text{or} \frac{x - 0.5 - 24}{\sqrt{19.2}}$	$\frac{-24}{2} = 1.2816$	M1
	[= P(Z > 1.48)]		
	= 1 - 0.9306 = 0.0694	<i>x</i> = 30.1	M1 A1
	< 0.10 so a significant result, there is evidence the		B1ft
	sandwiches or the shopkeepers claim is correct.	at more customers are parenasing	(8)
Notes:			14
(a)	1^{st} B1 for H ₀ must use $p = 2^{nd}$ B1 for H ₁ must use $p = 1^{st}$ M1 for writing or using B(30,0.15) – may be implied by correct CR 1^{st} A1 0.0480 or $X = 0$. Allow $X \le 0$. Ignore upper CR. NB Allow CR $X \le 1$ if using one tail test. 2^{nd} M1 A correct statement (see table below) Do not allow non-contextual conflicting statements eg"significant" and "accept H ₀ ". Ignore comparisons 2^{nd} A1 for a correct statement in context. For context we need idea of <u>change/decrease</u> in <u>number</u> of customers buying from display – may use different words. NB A correct contextual statement on its own scores M1A1		
	Two tail 0.025 < <i>p</i> < 0.975 or	Two tail <i>p</i> < 0.025 or <i>p</i> > 0.975 or	•
	One tail 0.05 < <i>p</i> < 0.95	One tail <i>p</i> < 0.05 or <i>p</i> > 0.95	
	2^{nd} not significant/ accept H ₀ / Not in CR or	significant/ reject H ₀ / In CR or cor	ntextual
	$\frac{M1}{2^{nd}}$ There is no evidence of a <u>change/decrease</u>	There is evidence of a <u>change/decr</u>	ease in
	A1 in the proportion of customers buying an	the proportion of customers buying	
	item from the <u>display</u>	from the <u>display</u> .	
(b)	1^{st} B1 both hypotheses correct – must use <i>p</i> .		
	1 st M1 for a normal approx		
	1 st A1 for correct mean and sd 2 nd M1 for use of continuity correction, either 30.5	$an 21.5 an (n \pm 0.5) accor$	
	3^{rd} M1 standardising with their mean and their sd)
	4 th M1 for 1 - tables value or 1.2816	$(x \pm 0.3)$	1
	2^{nd} A1 for awrt 0.069 or $x = 30.1$		
2 nd B1ft For a correct conclusion in context using their probability and 0.1 For context			t we need
	idea of more customers buying sandwiches – may	use different words	

GCE Statistics S2 (6684) June 2011

advancing learning, changing lives

Question Number	Scheme	
	One tail $0.1 or Two tail0.05 One tail p < 0.1 or p > 0.9 or0.05 or p > 0.95$	• Two tail <i>p</i> <
	$\begin{array}{ c c c c c }\hline 2^{nd} & not \ significant/ \ accept \ H_0/ \ Not \ in \ CR \ or \\ \hline M1 & contextual \end{array} \ significant/ \ reject \ H_0/ \ In \ CR \ o$	
	2^{nd} There is no evidence of an increase in the proportion of customers buying sandwichesThere is evidence of a change proportion of customers buying	
	SC using P(X<31.5) – P(X<30.5) can get B1M1 A1 M1 M1M0A0B0	
7 (a)	\cap shape which does not go below the <i>x</i> -axis [condone missing patios] Graph must end at the points (1,0) and (5,0) and the points labelled at 1 and 5	B1 B1 (2)
(b)	E(X) = 3 (by symmetry)	B1 (1)
(c)	$\left[E(X^{2}] = \int x^{2} f(x) dx = \frac{3}{32} \int (6x^{3} - x^{4} - 5x^{2}) dx\right]$	M1
	$= \frac{3}{32} \left[\frac{6x^4}{4} - \frac{x^5}{5} - \frac{5x^3}{3} \right]_{1}^{5}$	A1
	$= \frac{3}{32} \left(\left[\frac{6 \times 625}{4} - 625 - \frac{625}{3} \right] - \left[\frac{6}{4} - \frac{1}{5} - \frac{5}{3} \right] \right) = 9.8 $ (*)	M1 A1 cso (4)
(d)	s.d. = $\sqrt{9.8 - E(X)^2}$, = 0.8944 awrt 0.8	
(e)	F(1) = 0 $\Rightarrow \frac{1}{32}(a-15+9-1)=0$, leading to $a=7$	(2) M1 A1
(f)	F(2.29) = 0.2449, F(2.31) = 0.2515 Since F(q_1) = 0.25 and these values are either side of 0.25 then 2.29< q_1 < 2.31	(2) M1 A1 A1 (3)
(g)	Since the distribution is symmetric $q_3 = 5 - 1.3 = \underline{3.7}$	cao B1 (1)
(h)	We know P($q_1 = 2.3 < X < 3.7 = q_3$) = 0.5 so $k\sigma = 0.7$ so $k = \frac{0.7}{0.894} = 0.7826 = awrt 0.78$	M1
		A1 (2)
		17

Question Number	Scheme		Marks
Notes:			
(c)	This part is a "show that" therefore we need to see all the steps in the working		
	1 st M1 for showing intention of doing $\int x^2 f(x)$ and attempt	ot to multiply out bracke	t
	1^{st} A1 for correct integration, cao, ignore limits for this matrix 2^{nd} M1 for use of correct limits. Need to see evidence of su 2^{nd} A1 for cso leading to 9.8. Do not ignore subsequent we	bst both 5 and 1.	ırk.
(d)	M1 for a correct expression for standard deviation, mus	t include $$	
	A1 allow awrt 0.894, $\sqrt{0.8}, \frac{2\sqrt{5}}{5}$ oe		
(e)	M1 for a correct method to find <i>a</i> . e.g F(5) = 1 or $\int_{1}^{5} f(a) da$	x) = 1	
(f)	M1 for an attempt at $F(2.29)$ or $F(2.31)$ or <i>a</i>)	put $F(x) = 0.25$ (ft t	their value of
	1^{st} A1 for both values seen. awrt 0.245 and 0.252 2.305, -0.064	find 3 solutions awrt 6	5.76/6.75,
	2^{nd} A1 for comparison with 0.25 and stating Q ₁ Q ₁	state only 2.30 in range	e and stating
	lies between 2.29 and 2.31	lies between 2.29 and	2.31
(h)	M1 For $k\sigma = awrt 0.7$		
	A1 Allow awrt 0.78		
	NB a correct awrt 0.78 gains M1 A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

